

DIRECTORATE OF DISTANCE EDUCATION

UNIVERSITY OF NORTH BENGAL

MASTER OF SCIENCES- MATHEMATICS

SEMESTER -IV

NUMERICAL PROBLEM SOLVING BY

COMPUTER PROGRAMMING (THEORY)

DEMATH4SCORE2

BLOCK-2

UNIVERSITY OF NORTH BENGAL

Postal Address:

The Registrar,

University of North Bengal,

Raja Rammohunpur,

P.O.-N.B.U.,Dist-Darjeeling,

West Bengal, Pin-734013,

India.

Phone: (O) +91 0353-2776331/2699008

Fax:(0353) 2776313, 2699001

Email: regnbu@sancharnet.in ; regnbu@nbu.ac.in

Wesbsite: www.nbu.ac.in

First Published in 2019

All rights reserved. No Part of this book may be reproduced or transmitted, in any form or by

any means, without permission in writing from University of North Bengal. Any person who

does any unauthorised act in relation to this book may be liable to criminal prosecution and

civil claims for damages. This book is meant for educational and learning purpose. The

authors of the book has/have taken all reasonable care to ensure that the contents of the book

do not violate any existing copyright or other intellectual property rights of any person in any

manner whatsoever. In the even the Authors has/ have been unable to track any source and if

any copyright has been inadvertently infringed, please notify the publisher in writing for

corrective action.

FOREWORD

The Self Learning Material (SLM) is written with the aim of providing

simple and organized study content to all the learners. The SLMs are

prepared on the framework of being mutually cohesive, internally

consistent and structured as per the university‘s syllabi. It is a humble

attempt to give glimpses of the various approaches and dimensions to the

topic of study and to kindle the learner‘s interest to the subject

We have tried to put together information from various sources into this

book that has been written in an engaging style with interesting and

relevant examples. It introduces you to the insights of subject concepts

and theories and presents them in a way that is easy to understand and

comprehend.

We always believe in continuous improvement and would periodically

update the content in the very interest of the learners. It may be added

that despite enormous efforts and coordination, there is every possibility

for some omission or inadequacy in few areas or topics, which would

definitely be rectified in future.

We hope you enjoy learning from this book and the experience truly

enrich your learning and help you to advance in your career and future

endeavours.

NUMERICAL PROBLEM SOLVING

BY COMPUTER PROGRAMMING

BLOCK-1

Unit-1: Computer Programming

Unit-2: Introduction To C

Unit-3: Elements Of C -I

Unit-4: Elements Of C -Ii

Unit-5: Expression And ‗If‘ Statement In C

Unit-6: Branching And Looping Statement In C

Unit-7: Designing Structured Programs In C

BLOCK-2

UNIT-8 Inter Function Communication And Recursive Function In

C .. 6

UNIT-9 ARRAYS .. 25

UNIT-10 Pointers In C .. 41

UNIT-11 Dynamic Memory Allocation And Strings In C 58

UNIT-12 Structure In C And File Handling 76

UNIT-13 File Handling Function And Error Handling In C 92

UNIT 14: APPLICATION OF C IN NUMERICAL ANALYSIS .. 108

BLOCK-2 NUMERICAL PROBLEM

SOLVING BY COMPUTER

PROGRAMMING

Programming is the process of taking an algorithm and encoding it into

C was initially designed for programming UNIX operating system. Now

the software tool as well as the C compiler is written in C. Major parts of

popular operating systems like Windows, UNIX, Linux is still written in

C. This is because even today when it comes to performance (speed of

execution) nothing beats C. Moreover, if one is to extend the operating

system to work with new devices one needs to write device driver

programs. These programs are exclusively written in C. C seems so

popular is because it is reliable, simple and easy to use. often heard today

is – ―C has been already superceded by languages like C++, C# and Java.

6

UNIT-8 INTER FUNCTION

COMMUNICATION AND

RECURSIVE FUNCTION IN C

STRUCTURE

8.0 Objectives

8.1 Introduction

8.2 Inter Function Communication in C

8.2.1 Downward Communication

8.2.2 Upward Communication

8.2.3 Bi-directional Communication

8.3 Standard Functions in C

8.4 Scope of Variable in C

8.4.1 Before the function definition (Global Declaration)

8.4.2 Inside the function or block (Local Declaration)

8.4.3 In the function definition parameters (Formal Parameters)

8.5 Recursive Function in C

8.6 Type Qualifiers in C

8.7 Preprocessor Command in C

8.8 Lets Sum Up

8.9 Keywords

8.10 Questions for Review

8.11 Suggested Reading and References

8.12 Answers to Check your Progress

8.0 OBJECTIVES

Notes

7

Understands the Inter Function Communication in C

Comprehend Standard Functions & scope of variable in C

Enumerate Recursive Function in C

Understands Type Qualifiers and Preprocessor Command in C

8.1 INTRODUCTION

A computer program cannot handle all the tasks by itself. It requests

other program like entities called functions in C. We pass information to

the function called arguments which specified when the function is

called. A function either can return a value or returns nothing. Function

is a subprogram that helps reduce coding.

8.2 INTER FUNCTION

COMMUNICATION IN C

When a function gets executed in the program, the execution control is

transferred from calling a function to called function and executes

function definition, and finally comes back to the calling function. In this

process, both calling and called functions have to communicate with each

other to exchange information. The process of exchanging information

between calling and called functions is called inter-function

communication.

In C, the inter function communication is classified as follows...

 Downward Communication

 Upward Communication

 Bi-directional Communication

8.2.1 DOWNWARD COMMUNICATION

In this type of inter function communication, the data is transferred from

calling function to called function but not from called function to calling

function. The functions with parameters and without return value are

considered under downward communication. In the case of downward

communication, the execution control jumps from calling function to

Notes

8

called function along with parameters and executes the function

definition, and finally comes back to the calling function without any

return value. For example consider the following program...

Output:

8.2.2 UPWARD COMMUNICATION

In this type of inter-function communication, the data is transferred from

called function to calling-function but not from calling-function to

called-function. The functions without parameters and with return value

are considered under upward communication. In the case of upward

communication, the execution control jumps from calling-function to

Notes

9

called-function without parameters and executes the function definition,

and finally comes back to the calling function along with a return value.

For example, consider the following program...

Output:

8.2.3 BI - DIRECTIONAL COMMUNICATION

In this type of inter-function communication, the data is transferred from

calling-function to called function and also from called function to

calling-function. The functions with parameters and with return value are

considered under bi-directional communication. In the case of bi-

directional communication, the execution control jumps from calling-

function to called function along with parameters and executes the

function definition and finally comes back to the calling function along

with a return value. For example, consider the following program...

Notes

10

Output:

8.3 STANDARD FUNCTIONS IN C

The standard functions are built-in functions. In C programming

language, the standard functions are declared in header files and defined

in .dll files. In simple words, the standard functions can be defined as

"the readymade functions defined by the system to make coding more

easy". The standard functions are also called as library functions or pre-

defined functions.

In C when we use standard functions, we must include the respective

header file using #include statement. For example, the

function printf() is defined in header file stdio.h (Standard Input Output

Notes

11

header file). When we use printf() in our program, we must

include stdio.h header file using #include<stdio.h> statement.

C Programming Language provides the following header files with

standard functions.

Header File Purpose Example

Functions

stdio.h Provides functions to perform

standard I/O operations

printf(), scanf()

conio.h Provides functions to perform

console I/O operations

clrscr(), getch()

math.h Provides functions to perform

mathematical operations

sqrt(), pow()

string.h Provides functions to handle string

data values

strlen(), strcpy()

stdlib.h Provides functions to perform

general functions/td>

calloc(), malloc()

time.h Provides functions to perform

operations on time and date

time(),

localtime()

ctype.h Provides functions to perform -

testing and mapping of character

data values

isalpha(),

islower()

setjmp.h Provides functions that are used in

function calls

setjump(),

longjump()

signal.h Provides functions to handle signals

during program execution

signal(), raise()

assert.h Provides Macro that is used to verify

assumptions made by the program

assert()

locale.h Defines the location specific settings

such as date formats and currency

symbols

setlocale()

stdarg.h Used to get the arguments in a

function if the arguments are not

specified by the function

va_start(),

va_end(),

va_arg()

Notes

12

errno.h Provides macros to handle the

system calls

Error, errno

graphics.h Provides functions to draw graphics. circle(),

rectangle()

float.h Provides constants related to floating

point data values

stddef.h Defines various variable types

limits.h Defines the maximum and minimum

values of various variable types like

char, int and long

8.4 SCOPE OF VARIABLE IN C

When we declare a variable in a program, it can not be accessed against

the scope rules. Variables can be accessed based on their scope. The

scope of a variable decides the portion of a program in which the variable

can be accessed. The scope of the variable is defined as follows...

Scope of a variable is the portion of the program where a defined

variable can be accessed.

The variable scope defines the visibility of variable in the program.

Scope of a variable depends on the position of variable declaration.

In C programming language, a variable can be declared in three different

positions and they are as follows...

 Before the function definition (Global Declaration)

 Inside the function or block (Local Declaration)

 In the function definition parameters (Formal Parameters)

8.4.1 BEFORE THE FUNCTION DEFINITION (GLOBAL

DECLARATION)

Declaring a variable before the function definition (outside the function

definition) is called global declaration. The variable declared using

global declaration is called global variable. Tha global variable can be

accessed by all the functions that are defined after the global declaration.

Notes

13

That means the global variable can be accessed anywhere in the program

after its declaration. The global variable scope is said to be file scope.

Output:

Notes

14

In the above example program, the variables num1 and num2 are

declared as global variables. They are declared before the main()

function. So, they can be accessed by function main() and other functions

that are defined after main(). In the above example, the functions main(),

addition(), subtraction() and multiplication() can access the variables

num1 and num2.

8.4.2 INSIDE THE FUNCTION OR BLOCK (LOCAL

DECLARATION)

Declaring a variable inside the function or block is called local

declaration. The variable declared using local declaration is called local

variable. The local variable can be accessed only by the function or

block in which it is declared. That means the local variable can be

accessed only inside the function or block in which it is declared.

Output:

Notes

15

The above example program shows an error because, the variables num1

and num2 are declared inside the function main(). So, they can be used

only inside main() function and not in addition() function.

8.4.3 IN THE FUNCTION DEFINITION PARAMETERS

(FORMAL PARAMETERS)

The variables declared in function definition as parameters have a local

variable scope. These variables behave like local variables in the

function. They can be accessed inside the function but not outside the

function.

Output:

Notes

16

In the above example program, the variables a and b are declared in

function definition as parameters. So, they can be used only inside the

addition () function.

Check your Progress-1

1. What is Downward Communication?

__

__

__

2. Define Scope of Variable

__

__

__

3. What is local variable?

__

__

8.5 RECURSIVE FUNCTIONS IN C

In C programming language, function calls can be made from the main()

function, other functions or from the same function itself. The recursive

function is defined as follows...

A function called by itself is called recursive function.

The recursive functions should be used very carefully because, when a

function called by itself it enters into the infinite loop. And when a

function enters into the infinite loop, the function execution never gets

completed. We should define the condition to exit from the function call

so that the recursive function gets terminated.

When a function is called by itself, the first call remains under execution

till the last call gets invoked. Every time when a function call is invoked,

the function returns the execution control to the previous function call.

Notes

17

Output:

In the above example program, the factorial() function call is initiated

from main() function with the value 3. Inside the factorial() function, the

function calls factorial(2), factorial(1) and factorial(0) are called

recursively. In this program execution process, the function call

factorial(3) remains under execution till the execution of function calls

factorial(2), factorial(1) and factorial(0) gets completed. Similarly the

function call factorial(2) remains under execution till the execution of

function calls factorial(1) and factorial(0) gets completed. In the same

way the function call factorial(1) remains under execution till the

execution of function call factorial(0) gets completed. The complete

execution process of the above program is shown in the following

figure...

Notes

18

8.6 TYPE QUALIFIERS IN C

In C programming language, type qualifiers are the keywords used to

modify the properties of variables. Using type qualifiers, we can change

the properties of variables. The c programming language provides two

type qualifiers and they are as follows...

 const

 volatile

8.6.1 const TYPE QUALIFIER IN C

Notes

19

The const type qualifier is used to create constant variables. When a

variable is created with const keyword, the value of that variable can't be

changed once it is defined. That means once a value is assigned to a

constant variable, that value is fixed and cannot be changed throughout

the program.

The keyword const is used at the time of variable declaration. We use the

following syntax to create constant variable using const keyword.

When a variable is created with const keyword it becomes a constant

variable. The value of the constant variable can't be changed once it is

defined. The following program generates error message because we try

to change the value of constant variable x.

Notes

20

8.6.2 volatile TYPE QUALIFIER IN C

The volatile type qualifier is used to create variables whose values can't

be changed in the program explicitly but can be changed by any external

device or hardware.

For example, the variable which is used to store system clock is defined

as a volatile variable. The value of this variable is not changed explicitly

in the program but is changed by the clock routine of the operating

system.

8.7 PREPROCESSOR COMMANDS IN C

In C programming language, preprocessor directive is a step performed

before the actual source code compilation. It is not part of the

compilation. Preprocessor directives in C programming language are

used to define and replace tokens in the text and also used to insert the

contents of other files into the source file.

When we try to compile a program, preprocessor commands are executed

first and then the program gets compiled.

Every preprocessor command begins with # symbol. We can also create

preprocessor commands with parameters.

Following are the preprocessor commands in C programming language...

Notes

21

#define

#define is used to create symbolic constants (known as macros) in C

programming language. This preprocessor command can also be used

with parameterized macros.

Output:

#undef

#undef is used to destroy a macro that was already created using #define.

#ifdef

#ifdef returns TRUE if the macro is defined and returns FALSE if the

macro is not defined.

Notes

22

#ifndef

#ifndef returns TRUE if the specified macro is not defined otherwise

returns FALSE.

#if

#if uses the value of specified macro for conditional compilation.

#else

#else is an alternative for #if.

#elif

#elif is a #else followed by #if in one statement.

#endif

#endif is used terminate preprocessor conditional macro.

#include

#include is used to insert specific header file into C program.

#error

#error is used to print error message on stderr.

#pragma

#pragma is used to issue a special command to the compiler.

In C programming language, there are some pre-defined macros and they

are as follows...

1. __ DATE __ : The current date as characters in "MMM DD

YYYY" format.

2. __ TIME __ : The current time as characters in "HH : MM : SS"

format.

3. __ FILE __ : This contains the current file name.

4. __ LINE __ : This contains the current line number.

Notes

23

5. __ STDC __ : Defines 1 when compiler compiles with ANSI

Standards.

Check your Progress-1

4. State recursive function

__

__

5. What is const TYPE QUALIFIER IN C

__

__

__

8.8 LET US SUM UP

Using function it becomes easier to write a program and keep track of

what they are doing. If the operation of a program can be divided into

separate activities, and each activity placed in a different function, then

each could be written and checked more or less independently.

Separating the code into modular functions also makes the program

easier to design and understand.

8.9 KEYWORDS

Preprocessor macros - A predefined macro is a macro that is already

understood by the C pre processor without the program needing

to define it

Character- The abbreviation char is used as a reserved keyword in

some programming languages, such as C

Terminate - bring to an end.

Notes

24

8.10 QUESTIONS FOR REVIEW

1. Brief Inter Function Communication in C

2. Explain Standard Functions in C

3. Explain Recursive Function with example

4. What are preprocessor commands in C? State few examples

8.11 SUGGESTED READINGS AND

REFERENCES

1. B. Gottfried: Programming with C , Tata McGraw-Hill Edition 2002.

2. E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

3. Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

4. Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

5. Analysis of Numerical Methods—Isacsons& Keller.

6. Numerical solutions of Ord. Diff. Equations—M K Jain

7. Numerical solutions of Partial Diff. Equations—G D Smith.

8. Programming with C, B. Gottfried, Tata-McGraw Hill

9. Programming with C, K. R. Venugopal and Sudeep R. Prasad, Tata-

McGraw Hill

8.12 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide explanation with example - 8.2.1

2. Provide explanation with example – 8.4

3.Provide definition – 8.4.2

4. Provide definition – 8.5

5. Provide explanation – 8.6.1

25

UNIT-9 ARRAYS

STRUCTURE

9.0 Objectives

9.1 Introduction

9.2 Arrays in C

7.2.1 Declaration of an Array

7.2.2 Accessing individual elements of an Array

9.3 Types of Arrays in C

 7.3.1 System Defined

 7.3.2 User Defined

9.4 Application of Arrays in C

9.5 Let us sum up

9.6 Keywords

9.7Questions for Review

9.8 Suggested Reading and References

9.9 Answers to Check your Progress

9.0 OBJECTIVES

Understand the concept of Arrays, its types and application in C.

9.1 INTRODUCTION

When we work with a large number of data values we need that any

number of different variables. As the number of variables increases, the

complexity of the program also increases and so the programmers get

confused with the variable names. There may be situations where we

Notes

26

need to work with a large number of similar data values. To make this

work easier, C programming language provides a concept called "Array".

9.2 ARRAYS IN C

An array is a special type of variable used to store multiple values of

same data type at a time.

An array can also be defined as follows...

An array is a collection of similar data items stored in continuous

memory locations with single name.

9.2.1 DECLARATION OF AN ARRAY

In C programming language, when we want to create an array we must

know the datatype of values to be stored in that array and also the

number of values to be stored in that array.

We use the following general syntax to create an array...

Syntax for creating an array with size and initial values

Syntax for creating an array without size and with initial values

Notes

27

In the above syntax, the datatype specifies the type of values we store in

that array and size specifies the maximum number of values that can be

stored in that array.

Example Code

int a [3] ;

Here, the compiler allocates 6 bytes of contiguous memory locations

with a single name 'a' and tells the compiler to store three different

integer values (each in 2 bytes of memory) into that 6 bytes of memory.

For the above declaration, the memory is organized as follows...

In the above memory allocation, all the three memory locations have a

common name 'a'. So accessing individual memory location is not

possible directly. Hence compiler not only allocates the memory but also

assigns a numerical reference value to every individual memory location

of an array. This reference number is called "Index" or "subscript" or

"indices". Index values for the above example are as follows...

9.2.2 ACCESSING INDIVIDUAL ELEMENTS OF AN ARRAY

The individual elements of an array are identified using the combination

of 'arrayName' and 'indexValue'. We use the following general syntax to

access individual elements of an array...

Notes

28

For the above example the individual elements can be denoted as

follows...

For example, if we want to assign a value to the second memory location

of above array 'a', we use the following statement...

Example Code

a [1] = 100 ;

The result of the above assignment statement is as follows...

9.3 TYPES OF ARRAYS IN C

In C programming language, arrays are classified into two types. They

are as follows...

1. Single Dimensional Array / One Dimensional Array

Notes

29

2. Multi Dimensional Array

9.3.1 SINGLE DIMENSIONAL ARRAY

In C programming language, single dimensional arrays are used to store

list of values of same datatype. In other words, single dimensional arrays

are used to store a row of values. In single dimensional array, data is

stored in linear form. Single dimensional arrays are also called as one-

dimensional arrays, Linear Arrays or simply 1-D Arrays.

Declaration of Single Dimensional Array

We use the following general syntax for declaring a single dimensional

array...

Example Code

int rollNumbers [60] ;

The above declaration of single dimensional array reserves 60 continuous

memory locations of 2 bytes each with the name rollNumbers and tells

the compiler to allow only integer values into those memory locations.

Initialization of Single Dimensional Array

We use the following general syntax for declaring and initializing a

single dimensional array with size and initial values.

Example Code

int marks [6] = { 89, 90, 76, 78, 98, 86 } ;

Notes

30

The above declaration of single dimensional array reserves 6 contiguous

memory locations of 2 bytes each with the name marks and initializes

with value 89 in first memory location, 90 in second memory location,

76 in third memory location, 78 in fourth memory location, 98 in fifth

memory location and 86 in sixth memory location.

We can also use the following general syntax to intialize a single

dimensional array without specifying size and with initial values...

The array must be initialized if it is created without specifying any size.

In this case, the size of the array is decided based on the number of

values initialized.

Example Code

int marks [] = { 89, 90, 76, 78, 98, 86 } ;

char studentName [] = "btechsmartclass" ;

In the above example declaration, size of the array 'marks' is 6 and the

size of the array 'studentName' is 16. This is because in case of

character array, compiler stores one exttra character called \0 (NULL) at

the end.

Accessing Elements of Single Dimensional Array

In C programming language, to access the elements of single

dimensional array we use array name followed by index value of the

element that to be accessed. Here the index value must be enclosed in

square braces. Index value of an element in an array is the reference

number given to each element at the time of memory allocation. The

index value of single dimensional array starts with zero (0) for first

element and incremented by one for each element. The index value in an

array is also called as subscript or indices.

Notes

31

We use the following general syntax to access individual elements of

single dimensional array...

Example Code

marks [2] = 99 ;

In the above statement, the third element of 'marks' array is assinged

with value '99'.

9.3.2 MULTI DIMENSIONAL ARRAY

An array of arrays is called as multi dimensional array. In simple words,

an array created with more than one dimension (size) is called as multi

dimensional array. Multi dimensional array can be of two dimensional

array or three dimensional array or four dimensional array or more...

Most popular and commonly used multi dimensional array is two

dimensional array. The 2-D arrays are used to store data in the form of

table. We also use 2-D arrays to create mathematical matrices.

Declaration of Two Dimensional Array

We use the following general syntax for declaring a two dimensional

array...

The above declaration of two dimensional array reserves 6 continuous

memory locations of 2 bytes each in the form of 2 rows and 3 columns.

Initialization of Two Dimensional Array

We use the following general syntax for declaring and initializing a two

dimensional array with specific number of rows and columns with initial

values.

datatype arrayName [rows][colmns] = {{r1c1value, r1c2value,

...},{r2c1, r2c2,...}...} ;

Notes

32

Example Code

int matrix_A [2][3] = { {1, 2, 3},{4, 5, 6} } ;

The above declaration of two-dimensional array reserves 6 contiguous

memory locations of 2 bytes each in the form of 2 rows and 3 columns.

And the first row is initialized with values 1, 2 & 3 and second row is

initialized with values 4, 5 & 6.

We can also initialize as follows...

Accessing Individual Elements of Two Dimensional Array

In a C programming language, to access elements of a two-dimensional

array we use array name followed by row index value and column index

value of the element that to be accessed. Here the row and column index

values must be enclosed in separate square braces. In case of the two-

dimensional array the compiler assigns separate index values for rows

and columns.

We use the following general syntax to access the individual elements of

a two-dimensional array...

Example Code

matrix_A [0][1] = 10 ;

In the above statement, the element with row index 0 and column index 1

of matrix_A array is assinged with value 10.

Check your Progress-1

1. Define Array

__

__

__

Notes

33

2. What is Multi Dimensional Array

__

__

9.4 APPLICATIONS OF ARRAYS IN C

In C programming language, arrays are used in wide range of

applications. Few of them are as follows...

● Arrays are used to Store List of values

In c programming language, single dimensional arrays are used to store

list of values of same datatype. In other words, single dimensional arrays

are used to store a row of values. In single dimensional array data is

stored in linear form.

● Arrays are used to Perform Matrix Operations

We use two dimensional arrays to create matrix. We can perform various

operations on matrices using two dimensional arrays.

● Arrays are used to implement Search Algorithms

We use single dimensional arrays to implement search algorihtms like ...

1. Linear Search

What is Search?

Search is a process of finding a value in a list of values. In other words,

searching is the process of locating given value position in a list of

values.

Linear Search Algorithm (Sequential Search Algorithm)

Linear search algorithm finds a given element in a list of elements

with O(n) time complexity where n is total number of elements in the

list. This search process starts comparing search element with the first

element in the list. If both are matched then result is element found

Notes

34

otherwise search element is compared with the next element in the list.

Repeat the same until search element is compared with the last element

in the list, if that last element also doesn't match, then the result is

"Element not found in the list". That means, the search element is

compared with element by element in the list.

Linear search is implemented using following steps...

 Step 1 - Read the search element from the user.

 Step 2 - Compare the search element with the first element in the list.

 Step 3 - If both are matched, then display "Given element is

found!!!" and terminate the function

 Step 4 - If both are not matched, then compare search element with

the next element in the list.

 Step 5 - Repeat steps 3 and 4 until search element is compared with

last element in the list.

 Step 6 - If last element in the list also doesn't match, then display

"Element is not found!!!" and terminate the function.

Example

Consider the following list of elements and the element to be searched...

Notes

35

 Output

Notes

36

2. Binary Search

Binary Search Algorithm

Binary search algorithm finds a given element in a list of elements

with O(log n) time complexity where n is total number of elements in

the list. The binary search algorithm can be used with only a sorted list of

elements. That means the binary search is used only with a list of

elements that are already arranged in an order. The binary search can not

be used for a list of elements arranged in random order. This search

process starts comparing the search element with the middle element in

the list. If both are matched, then the result is "element found".

Otherwise, we check whether the search element is smaller or larger than

the middle element in the list. If the search element is smaller, then we

repeat the same process for the left sublist of the middle element. If the

search element is larger, then we repeat the same process for the right

sublist of the middle element. We repeat this process until we find the

search element in the list or until we left with a sublist of only one

element. And if that element also doesn't match with the search element,

then the result is "Element not found in the list".

Binary search is implemented using following steps...

 Step 1 - Read the search element from the user.

 Step 2 - Find the middle element in the sorted list.

 Step 3 - Compare the search element with the middle element in

the sorted list.

 Step 4 - If both are matched, then display "Given element is

found!!!" and terminate the function.

 Step 5 - If both are not matched, then check whether the search

element is smaller or larger than the middle element.

Notes

37

 Step 6 - If the search element is smaller than middle element,

repeat steps 2, 3, 4 and 5 for the left sublist of the middle

element.

 Step 7 - If the search element is larger than middle element,

repeat steps 2, 3, 4 and 5 for the right sublist of the middle

element.

 Step 8 - Repeat the same process until we find the search element

in the list or until sublist contains only one element.

 Step 9 - If that element also doesn't match with the search

element, then display "Element is not found in the list!!!" and

terminate the function.

Example

Consider the following list of elements and the element to be searched...

Notes

38

Output

Arrays are used to implement Sorting Algorithms

We use single dimensional arrays to implement sorting algorihtms like ...

1. Insertion Sort

2. Bubble Sort

Notes

39

3. Selection Sort

4. Quick Sort

5. Merge Sort, etc.,

 Arrays are used to implement Datastructures

We use single dimensional arrays to implement datastructures like...

1. Stack Using Arrays

2. Queue Using Arrays

Arrays are also used to implement CPU Scheduling Algorithms

Check your Progress-1

3. What is Search?

__

__

__

4. State 2 application of Arrays.

__

__

__

9.5 LET US SUM UP

Arrays a kind of data structure that can store a fixed-size sequential

collection of elements of the same type. We have learnt different types of

arrays and their applications.

9.6 KEYWORDS

Reserve - retain for future use.

Access - obtain or retrieve (computer data or a file).

Syntax - the structure of statements in a computer language.

Declaration - a formal or explicit statement or announcement.

Notes

40

9.7 QUESTIONS FOR REVIEW

1. Explain Declaration of an Array

2. Explain Single Dimensional Array

3. What is Linear Search? Discuss in detail.

9.8 SUGGESTED READINGS AND

REFERENCES

1. B. Gottfried: Programming with C , Tata McGraw-Hill Edition 2002.

2. E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

3. Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

4. Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

5. Analysis of Numerical Methods—Isacsons& Keller.

6. Numerical solutions of Ord. Diff. Equations—M K Jain

7. Numerical solutions of Partial Diff. Equations—G D Smith.

8. Programming with C, B. Gottfried, Tata-McGraw Hill

9. Programming with C, K. R. Venugopal and Sudeep R. Prasad, Tata-

McGraw Hill

9.9 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide definition – 9.2

2. Provide explanation with example – 9.3.2

3.Provide definition – 9.4

4. Provide explanation – 9.4

41

UNIT-10 POINTERS IN C

STRUCTURE

10.0 Objectives

10.1 Introduction

10.2 Pointers in C

10.2.1 Declaring Pointers (Creating Pointers)

10.2.2 Assigning Address to Pointer

10.2.3 Accessing Variable Value Using Pointer

10.2.4 Memory Allocation of Pointer Variables

10.3 Pointers Arithmetic Operations in C

10.3.1 Addition Operation on Pointer

10.3.2 Subtraction Operation on Pointer

10.3.3 Increment & Decrement Operation on Pointer

10.3.4 Comparison of Pointers

10.4 Pointers to Pointers in C

10.5 Pointers to void in C

10.6 Pointers to Arrays in C

10.7 Pointers for Functions in C

10.8 Let us sum up

10.9 Keywords

10.10 Questions for Review

10.11 Suggested Reading and References

10.12 Answers to Check your Progress

10.0 OBJECTIVES

Understand the Pointers in C

Notes

42

Comprehend the Pointers Arithmetic Operations in C

Understand the Pointers to void in C

Understand the application of pointers to array and function

10.1 INTRODUCTION

In the C programming language, we use normal variables to store user

data values. When we declare a variable, the compiler allocates required

memory with the specified name. In the c programming language, every

variable has a name, datatype, value, storage class, and address. We use a

special type of variable called a pointer to store the address of another

variable with the same datatype.

10.2 POINTERS IN C

A pointer is defined as follows...

Pointer is a special type of variable used to store the memory

location address of a variable.

In the C programming language, we can create pointer variables of any

data type. Every pointer stores the address the variable with same data

type only. That means integer pointer is used store the address of integer

variable only.

Accessing the Address of Variables

In C programming language, we use the reference operator "&" to

access the address of variable. For example, to access the address of a

variable "marks" we use "&marks". We use the following printf

statement to display memory location address of variable "marks"...

Example Code

printf("Address : %u", &marks) ;

Notes

43

In the above example statement %u is used to display address

of marks variable. Address of any memory location is unsigned integer

value.

10.2.1 DECLARING POINTERS (CREATING POINTERS)

In C programming language, declaration of pointer variable is similar to

the creation of normal variable but the name is prefixed with * symbol.

We use the following syntax to declare a pointer variable...

A variable declaration prefixed with * symbol becomes a pointer

variable.

Example Code

int *ptr ;

In the above example declaration, the variable "ptr" is a pointer variable

that can be used to store any integer variable address.

10.2.2 ASSIGNING ADDRESS TO POINTER

To assign address to a pointer variable we use assignment operator with

the following syntax...

For example, consider the following variables declaration...

Example Program | Test whether given number is divisible by 5.

int a, *ptr ;

In the above declaration, variable "a" is a normal integer variable and

variable "ptr" is an integer pointer variable. If we want to assign the

address of variable "a" to pointer variable "ptr" we use the following

statement...

Example Code

Notes

44

ptr = &a ;

In the above statement, the address of variable "a" is assigned to pointer

variable "ptr". Here we say that pointer variable ptr is pointing to

variable a.

10.2.3 ACCESSING VARIABLE VALUE USING POINTER

Pointer variables are used to store the address of other variables. We can

use this address to access the value of the variable through its pointer.

We use the symbol "*" infront of pointer variable name to access the

value of variable to which the pointer is pointing. We use the following

general syntax...

Output

In the above example program, variable a is a normal variable and

variable ptr is a pointer variable. Address of variable a is stored in

Notes

45

pointer variable ptr. Here ptr is used to access the address of

variable a and *ptr is used to access the value of variable a.

10.2.4 MEMORY ALLOCATION OF POINTER VARIABLES

Every pointer variable is used to store the address of another variable. In

computer memory address of any memory location is an unsigned

integer value. In C programming language, unsigned integer requires 2

bytes of memory. So, irrespective of pointer datatype every pointer

variable is allocated with 2 bytes of memory.

10.3 POINTERS ARITHMETIC

OPERATIONS IN C

Pointer variables are used to store the address of variables. Address of

any variable is an unsigned integer value i.e., it is a numerical value. So

we can perform arithmetic operations on pointer values. But when we

perform arithmetic operations on pointer variable, the result depends on

the amount of memory required by the variable to which the pointer is

pointing.

In the C programming language, we can perform the following

arithmetic operations on pointers...

1. Addition

2. Subtraction

3. Increment

4. Decrement

5. Comparison

10.3.1 ADDITION OPERATION ON POINTER

In the C programming language, the addition operation on pointer

variables is calculated using the following formula...

Notes

46

Output:

10.3.2 SUBTRACTION OPERATION ON POINTER

In the C programming language, the subtraction operation on pointer

variables is calculated using the following formula...

Notes

47

Output

10.3.3 INCREMENT & DECREMENT OPERATION ON

POINTER

The increment operation on pointer variable is calculated as follows...

Notes

48

Output

The decrement operation on pointer variable is calculated as follows...

Output

10.3.4 COMPARISON OF POINTERS

Notes

49

The comparison operation is perform between the pointers of same

datatype only. In C programming language, we can use all comparison

operators (relational operators) with pointers.

[NOTE: We can't perform multiplication and division operations on pointers.]

Check your Progress-1

1. Explain Pointer.

__

__

__

2. Discuss addition operation on pointer

__

__

__

10.4 POINTERS TO POINTERS IN C

In the C programming language, we have pointers to store the address of

variables of any datatype. A pointer variable can store the address of a

normal variable. C programming language also provides a pointer

variable to store the address of another pointer variable. This type of

pointer variable is called a pointer to pointer variable. Sometimes we also

call it a double pointer. We use the following syntax for creating pointer

to pointer…

 Example Program

int **ptr ;

Here, ptr is an integer pointer variable that stores the address of another

integer pointer variable but does not stores the normal integer variable

address.

Notes

50

MOST IMPORTANT POINTS TO BE REMEMBERED

1. To store the address of normal variable we use single pointer variable

2. To store the address of single pointer variable we use double pointer

variable

3. To store the address of double pointer variable we use triple pointer

variable

4. Similarly the same for remaining pointer variables also…

Output:

10.5 POINTERS TO VOID IN C

In the C programming language, pointer to void is the concept of

defining a pointer variable that is independent of data type. In C

programming language, a void pointer is a pointer variable used to store

the address of a variable of any datatype. That means single void pointer

can be used to store the address of integer variable, float variable,

Notes

51

character variable, double variable or any structure variable. We use the

keyword "void" to create void pointer. We use the following syntax for

creating a pointer to void…

Example Code

void *ptr ;

Here, "ptr" is a void pointer variable which is used to store the address

of any datatype variable.

MOST IMPORTANT POINTS TO BE REMEMBERED

1. void pointer stores the address of any datatype variable.

Output:

Notes

52

10.6 POINTERS TO ARRAYS IN C

In the C programming language, when we declare an array the compiler

allocate the required amount of memory and also creates a constant

pointer with array name and stores the base address of that pointer in it.

The address of the first element of an array is called as base address of

that array.

The array name itself acts as a pointer to the first element of that array.

Consider the following example of array declaration...

Example Code

int marks[6] ;

For the above declaration, the compiler allocates 12 bytes of memory and

the address of first memory location (i.e., marks[0]) is stored in a

constant pointer called marks. That means in the above

example, marks is a pointer to marks[0].

Output:

Notes

53

MOST IMPORTANT POINTS TO BE REMEMBERED

1. An array name is a constant pointer.

2. We can use the array name to access the address and value of all the

elements of that array.

3. Since array name is a constant pointer we can't modify its value.

Consider the following example statements...

Example Code

ptr = marks + 2 ;

Here, the pointer variable "ptr" is assigned with address

of "marks[2]" element

Example Code

printf("Address of 'marks[4]' = %u", marks+4) ;

The above printf statement displays the address of element "marks[4]".

EXAMPLE CODE

printf("Value of 'marks[0]' = %d", *marks) ;

printf("Value of 'marks[3]' = %d", *(marks+3)) ;

In the above two statements, first printf statement prints the

value 89 (i.e., value of marks[0]) and the second printf statement prints

the value 72 (i.e., value of marks[3]).

EXAMPLE CODE

marks++ ;

The above statement generates compilation error because the array

name acts as a constant pointer. So we can't change its value.

Notes

54

In the above example program, the array name marks can be used as

follows...

marks is same as &marks[0]

marks + 1 is same as &marks[1]

marks + 2 is same as &marks[2]

marks + 3 is same as &marks[3]

marks + 4 is same as &marks[4]

marks + 5 is same as &marks[5]

*marks is same as marks[0]

*(marks + 1) is same as marks[1]

*(marks + 2) is same as marks[2]

*(marks + 3) is same as marks[3]

*(marks + 4) is same as marks[4]

*(marks + 5) is same as marks[5]

10.6.1 POINTERS TO MULTI DIMENSIONAL ARRAY

In case of multi-dimensional array also the array name acts as a constant

pointer to the base address of that array. For example, we declare an

array as follows...

EXAMPLE CODE

int marks[3][3] ;

In the above example declaration, the array name marks acts as constant

pointer to the base address (address of marks[0][0]) of that array.

In the above example of two dimensional array, the

element marks[1][2] is accessed as *(*(marks + 1) + 2).

10.7 POINTERS FOR FUNCTIONS IN C

In the C programming language, there are two ways to pass parameters

to functions. They are as follows...

1. Call by Value

Notes

55

2. Call By Reference

We use pointer variables as formal parameters in call by

reference parameter passing method.

In case of call by reference parameter passing method, the address of

actual parameters is passed as arguments from the calling function to the

called function. To recieve this address, we use pointer variables as

formal parameters.

Consider the following program for swapping two variable values...

Output:

In the above example program, we are passing the addresses of

variables a and b and these are received by the pointer variables x and y.

Notes

56

In the called function swap we use the pointer variables x and y to swap

the values of variables a and b.

Check your Progress-1

3. What is Double Pointer.

__

__

4. Define base address& marks

__

__

__

10.8 LET US SUM UP

We learnt about pointers- how to create, access and address the pointers.

Enumerate its various application in C programming. Application of

pointers in Arrays and functions.

10.9 KEYWORDS

Create - bring (something) into existence.

Argument - the term argument refers to any expression within the

parentheses of a function call

Swap - the act of swapping two variables refers to mutually exchanging

the values of the variables.

10.10 QUESTIONS FOR REVIEW

1. Explain accessing variable value using pointer

2. Discuss increment & decrement operation on pointer

Notes

57

3. What do you understand by ‗pointers to void in C‘?

4. Explain Pointers for Functions in C

10.11 SUGGESTED READINGS AND

REFERENCES

1. B. Gottfried: Programming with C , Tata McGraw-Hill Edition 2002.

2. E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

3. Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

4. Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

5. Analysis of Numerical Methods—Isacsons& Keller.

6. Numerical solutions of Ord. Diff. Equations—M K Jain

7. Numerical solutions of Partial Diff. Equations—G D Smith.

8. Programming with C, B. Gottfried, Tata-McGraw Hill

9. Programming with C, K. R. Venugopal and Sudeep R. Prasad, Tata-

McGraw Hill

10.12 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide explanation and definition – 10.2

2. Provide explanation with example – 10.3.1

3.Provide explanation – 10.4

4. Provide definition – 10.6

58

UNIT-11 DYNAMIC MEMORY

ALLOCATION AND STRINGS IN C

STRUCTURE

11.0 Objectives

11.1 Introduction

11.2 Dynamic Memory Allocation in C

11.2.1 malloc()

11.2.2 calloc()

11.2.3 realloc()

11.2.4 free()

11.3 String in C

11.3.1 Creating string in C programming language

 11.3.2 Assigning string value in c programming language

11.3.3 Reading string value from user in c programming language

11.4 String Handling Functions in C

11.5 Enumerated Types (enum) in C

11.6 typedef in C

11.6.1 typedef with primitive datatypes

11.6.2 typedef int Number

11.6.3 typedef with Arrays

11.6.4 typedef with user defined datatypes like structures, unions

etc.,

11.6.5 typedef with Pointers

11.7 Application of Arrays in C

11.8 Let us sum up

11.9 Keywords

Notes

59

11.10 Questions for Review

11.11 Suggested Reading and References

11.12 Answers to Check your Progress

11.0 OBJECTIVES

Understand the Dynamic Memory Allocation in C

Understand the concept of String and String Handling functions in C

Comprehend Enumeration, typedef and application of arrays

11.1 INTRODUCTION

In C programming language, when we declare variables memory is

allocated in space called stack. The memory allocated in the stack is

fixed at the time of compilation and remains until the end of the program

execution. When we create an array, we must specify the size at the time

of the declaration itself and it cannot be changed during the program

execution. This is a major problem when we do not know the number of

values to be stored in an array. To solve this we use the concept

of Dynamic Memory Allocation

11.2 DYNAMIC MEMORY ALLOCATION

IN C

 The dynamic memory allocation allocates memory from heap storage.

Dynamic memory allocation is defined as follow...

Allocation of memory during the program execution is called

dynamic memory allocation.

Or

Dynamic memory allocation is the process of allocating the memory

manually at the time of program execution.

Notes

60

We use pre-defined or standard library functions to allocate memory

dynamically. There are FOUR standard library functions that are defined

in the header file known as "stdlib.h". They are as follows...

 malloc()

calloc()

realloc()

free()

11.2.1 malloc()

malloc() is the standard library function used to allocate a memory block

of specified number of bytes and returns void pointer. The void pointer

can be casted to any datatype. If malloc() function unable to allocate

memory due to any reason it returns NULL pointer.

Syntax

11.2.2 calloc()

calloc() is the standard library function used to allocate multiple memory

blocks of the specified number of bytes and initializes them to ZERO.

Notes

61

calloc() function returns void pointer. If calloc() function unable to

allocate memory due to any reason it returns a NULL pointer. Generally,

calloc() is used to allocate memory for array and structure. calloc()

function takes two arguments and they are 1. The number of blocks to be

allocated, 2. Size of each block in bytes

Syntax

11.2.3 realloc()

realloc() is the standard library function used to modify the size of

memory blocks that were previously allocated using malloc() or calloc().

realloc() function returns void pointer. If calloc() function unable to

allocate memory due to any reason it returns NULL pointer.

Syntax

Notes

62

11.2.4 free()

free() is the standard library function used to deallocate memory block

that was previously allocated using malloc() or calloc(). free() function

returns void pointer. When free() function is used with memory allocated

that was created using calloc(), all the blocks are get deallocated.

Syntax

Notes

63

Check your Progress-1

1. State Dynamic memory allocation in C

__

__

__

2. Explain calloc()

__

__

__

11.3 STRINGS IN C

String is a set of characters that are enclosed in double quotes. In the C

programming language, strings are created using one dimension array of

character datatype. Every string in C programming language is enclosed

within double quotes and it is terminated with NULL (\0) character.

Whenever c compiler encounters a string value it automatically appends

a NULL character (\0) at the end. The formal definition of string is as

follows...

String is a set of characters enclosed in double quotation marks. In C

programming, the string is a character array of single dimension.

In C programming language, there are two methods to create strings and

they are as follows...

1. Using one dimensional array of character datatype (static

memory allocation)

2. Using a pointer array of character datatype (dynamic memory

allocation)

11.3.1 CREATING STRING IN C PROGRAMMING LANGUAGE

In C, strings are created as a one-dimensional array of character datatype.

We can use both static and dynamic memory allocation. When we create

Notes

64

a string, the size of the array must be one more than the actual number of

characters to be stored. That extra memory block is used to store string

termination character NULL (\0). The following declaration stores a

string of size 5 characters.

The following declaration creates a string variable of a specific size at

the time of program execution.

11.3.2 ASSIGNING STRING VALUE IN C PROGRAMMING

LANGUAGE

String value is assigned using the following two methods...

1. At the time of declaration (initialization)

2. After declaration

11.3.3 READING STRING VALUE FROM USER IN C

PROGRAMMING LANGUAGE

We can read a string value from the user during the program execution.

We use the following two methods...

1. Using scanf() method - reads single word

Notes

65

2. Using gets() method - reads a line of text

Using scanf() method we can read only one word of string. We

use %s to represent string in scanf() and printf() methods.

When we want to read multiple words or a line of text, we use a pre-

defined method gets(). The gets() method terminates the reading of text

with Enter character.

Notes

66

C Programming language provides a set of pre-definied functions

called String Handling Functions to work with string values. All the

string handling functions are defined in a header file called string.h.

11.4 STRING HANDLING FUNCTIONS IN

C

C programming language provides a set of pre-defined functions

called string handling functions to work with string values. The string

handling functions are defined in a header file called string.h. Whenever

we want to use any string handling function we must include the header

file called string.h.

The following table provides most commonly used string handling

function and their use...

Function Syntax (or) Example Description

strcpy() strcpy(string1, string2) Copies string2 value into

string1

strncpy() strncpy(string1, string2, 5) Copies first 5 characters

string2 into string1

strlen() strlen(string1) returns total number of

characters in string1

strcat() strcat(string1,string2) Appends string2 to string1

strncat() strncpy(string1, string2, 4) Appends first 4 characters of

string2 to string1

strcmp() strcmp(string1, string2) Returns 0 if string1 and

string2 are the same;

less than 0 if string1<string2;

greater than 0 if

string1>string2

strncmp() strncmp(string1, string2, 4) Compares first 4 characters

of both string1 and string2

strcmpi() strcmpi(string1,string2) Compares two strings,

string1 and string2 by

ignoring case (upper or

Notes

67

lower)

stricmp() stricmp(string1, string2) Compares two strings,

string1 and string2 by

ignoring case (similar to

strcmpi())

strlwr() strlwr(string1) Converts all the characters of

string1 to lower case.

strupr() strupr(string1) Converts all the characters of

string1 to upper case.

strdup() string1 = strdup(string2) Duplicated value of string2 is

assigned to string1

strchr() strchr(string1, 'b') Returns a pointer to the first

occurrence of character 'b' in

string1

strrchr() 'strrchr(string1, 'b') Returns a pointer to the last

occurrence of character 'b' in

string1

strstr() strstr(string1, string2) Returns a pointer to the first

occurrence of string2 in

string1

strset() strset(string1, 'B') Sets all the characters of

string1 to given character 'B'.

strnset() strnset(string1, 'B', 5) Sets first 5 characters of

string1 to given character 'B'.

strrev() strrev(string1) It reverses the value of

string1

11.5 ENUMERATED TYPES (ENUM) IN C

In C programming language, an enumeration is used to create user-

defined datatypes. Using enumeration, integral constants are assigned

with names and we use these names in the program. Using names in

programming makes it more readable and easy to maintain.

Notes

68

Enumeration is the process of creating user defined datatype by

assigning names to integral constants

We use the keyword enum to create enumerated datatype. The general

syntax of enum is as follows...

In the above syntax, integral constant '0' is assigned to name1, integral

constant '1' is assigned to name2 and so on. We can also assign our own

integral constants as follows...

In the above syntax, integral constant '10' is assigned to name1, integral

constant '30' is assigned to name2 and so on.

In the above example program a user defined datatype "day is created

seven values, monday as integral constant '0', tuesday as integral constant

'1', wednesday as integral constant '2', thursday as integral constant '3',

Notes

69

friday as integral constant '4', saturday as integral constant '5' and sunday

as integral constant '6'. Here, when we display tuesday it displays the

respective integral constant '1'.

We can also change the order of integral constants, consider the

following example program.

In the above example program, the integral constant value starts with '1'

instead of '0'. Here, tuesday value is displayed as '2'.

We can also create enum with our own integral constants, consider the

following example program.

Notes

70

Some times we may assign our own integral constant from other than the

first name. In this case, compiler follows default integral constants for

the name that is before the user-defined integral constant and from user-

defined constant onwards it resumes. Consider the following example

program.

In the above example program a user defined datatype "day is created

seven values, monday as integral constant '0', tuesday as integral constant

'1', wednesday as integral constant '2', thursday as integral constant '10',

friday as integral constant '11', saturday as integral constant '12' and

sunday as integral constant '13'.

Note - In enumeration, more than one name may give with same integral

constant.

11.6 TYPEDEF IN C

In C programming language, typedef is a keyword used to create alias

name for the existing datatypes. Using typedef keyword we can create a

temporary name to the system defined datatypes like int, float, char and

double. we use that temporary name to create a variable. The general

syntax of typedef is as follows...

Notes

71

11.6.1 typedef with primitive datatypes

Consider the following example of typedef

11.6.2 typedef int Number

In the above example, Number is defined as alias name for integer

datatype. So, we can use Number to declare integer variables.

Notes

72

In the above example program, Array is the alias name of integer array

type of size 5. We can use Array as datatype to create integer array of

size 5. Here, list is an integer array of size 5.

11.6.3 typedef with Arrays

In C programming language, typedef is also used with arrays. Consider

the following example program to understand how typedef is used with

arrays.

11.6.4 typedef with user defined datatypes like structures, unions

etc.,

In C programming language, typedef is also used with structures and

unions. Consider the following example program to understand how

typedef is used with structures.

Notes

73

In the above example program, stud is the alias name of student

structure. We can use stud as datatype to create variables of student

structure. Here, s1 is a variable of student structure datatype.

11.6.5 typedef with Pointers

In C programming language, typedef is also used with pointers. Consider

the following example program to understand how typedef is used with

pointers.

Check your Progress-2

3. What is String? State its methods to create the strings.

__

__

4. Give description of strcmp()

__

__

__

5. Explain Enumeration

Notes

74

__

__

__

11.7 LET US SUM UP

We explored dynamic memory allocation concept in C. In the C

programming language, strings are created using one dimension array of

character datatype. We came across different string handling

functions.Using enumeration, integral constants are assigned with names

.We learnt about typedef keyword we can create a temporary name to the

system defined datatypes.

11.8 KEYWORDS

Predefined functions means functions which we will not define but we

can use those functions in our code by including some header files

because they have a definition in header files called (filename. h)

Enclosed - to close in

Alias - a false or assumed identity.

Data type - a particular kind of data item, as defined by the values it can

take, the programming language used, or the operations that can be

performed on it.

11.9 QUESTIONS FOR REVIEW

1. Explain realloc() & free() standard library function

2. State two methods to create strings

3. Brief about string handling functions

4. Explain Pointers for Functions in C

Notes

75

5. Explain typedef in C

11.10 SUGGESTED READINGS AND

REFERENCES

1. B. Gottfried: Programming with C , Tata McGraw-Hill Edition 2002.

2. E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

3. Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

4. Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

5. Analysis of Numerical Methods—Isacsons& Keller.

6. Numerical solutions of Ord. Diff. Equations—M K Jain

7. Numerical solutions of Partial Diff. Equations—G D Smith.

8. Programming with C, B. Gottfried, Tata-McGraw Hill

9. Programming with C, K. R. Venugopal and Sudeep R. Prasad, Tata-

McGraw Hill

11.11 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide definition – 11.2

2. Provide explanation with example – 11.2.2

3.Provide explanation – 11.3

4. Provide explanation in the table – 11.4

5. Provide definition – 11.5

76

UNIT-12 STRUCTURE IN C AND FILE

HANDLING

STRUCTURE

12.0 Objectives

12.1 Introduction

12.2 Structure in C

12.2.1 How to create structure?

12.2.2 Creating and Using structure variables

12.2.3 Memory allocation of structure

12.3 Union in C

12.3.1 How to create union?

 12.3.2 Creating and Using union variables

12.3.3 Memory allocation of union

12.4 Bit Field in C

12.5 Command Line Argument in C

12.6 Files in C

12.7 File Handling Functions in C

12.7.1 Creating or Opening a File

12.8 Lets Sum up

12.9 Keywords

12.10 Questions for Review

12.11 Suggested Reading and References

12.12 Answers to Check your Progress

Notes

77

12.0 OBJECTIVES

Understand the Structure in C

Comprehend the Union in C

Understand the concept of Bit Field and Command Line Argument in C

Understand the concept of Files in C

12.1 INTRODUCTION

Structure is a user-defined datatype in C language which allows us to

combine data of different types together. Structure helps to construct a

complex data type which is more meaningful. It is somewhat similar to

an Array, but an array holds data of similar type only.

12.2 STRUCTURES IN C

In C programming language, a structure is a collection of elements of the

different data type. The structure is used to create user-defined data type

in the C programming language. As the structure used to create a user-

defined data type, the structure is also said to be ―user-defined data type

in C‖.

In other words, a structure is a collection of non-homogeneous elements.

Using structure we can define new data types called user-defined data

types that holds multiple values of the different data type. The formal

definition of structure is as follows...

Structure is a collection of different type of elements under a single

name that acts as user defined data type in C.

Generally, structures are used to define a record in the C programming

language. Structures allow us to combine elements of a different data

type into a group. The elements that are defined in a structure are called

members of structure.

Notes

78

12.2.1 HOW TO CREATE STRUCTURE?

To create structure in C, we use the keyword called "struct". We use the

following syntax to create structures in c programming language.

Following is the example of creating a structure called Student which is

used to hold student record.

[Important Points to be remembered

 Every structure must terminated with semicolon symbol (;).

 "struct" is a keyword, it must be used in lowercase letters only.]

12.2.2 CREATING AND USING STRUCTURE

VARIABLES

In a C programming language, there are two ways to create structure

variables. We can create structure variable while defining the structure

and we can also create after terminating structure using struct keyword.

To access members of a structure using structure variable, we use dot (.)

operator.

Consider the following example code...

Notes

79

In the above example program, the stucture variable "stud_1 is created

while defining the structure and the variable "stud_2 is careted using

struct keyword. Whenever we access the members of a structure we use

the dot (.) operator.

12.2.3 MEMORY ALLOCATION OF

STRUCTURE

When the structures are used in the C programming language, the

memory does not allocate on defining a structure. The memory is

allocated when we create the variable of a particular structure. As long as

the variable of a structure is created no memory is allocated. The size of

memory allocated is equal to the sum of memory required by individual

members of that structure. In the above example program, the variables

stud_1 and stud_2 are allocated with 36 bytes of memory each.

Notes

80

[Important Points to be Remembered

 All the members of a structure can be used simultaneously.

 Until variable of a structure is created no memory is allocated.

 The memory required by a structure variable is sum of the memory

required by individual members of that structure.]

12.3 UNIONS IN C

In C programming language, the union is a collection of elements of the

different data type. The union is used to create user-defined data type in

the C programming language. As the union used to create a user-defined

data type, the union is also said to be ―user-defined data type in C‖.

In other words, the union is a collection of non-homogeneous elements.

Using union we can define new data types called user-defined data types

that holds multiple values of the different data type. The formal

definition of a union is as follows...

Union is a collection of different type of elements under a single

name that acts as user defined data type in C.

Generally, unions are used to define a record in the c programming

language. Unions allow us to combine elements of a different data type

into a group. The elements that are defined in a union are called members

of union.

12.3.1 HOW TO CREATE UNION?

To create union in C, we use the keyword called "union". We use the

following syntax to create unions in C programming language.

Notes

81

Following is the example of creating a union called Student which is

used to hold student record.

 Important Points to be Remembered

 Every union must terminated with semicolon symbol (;).

 "union" is a keyword, it must be used in lowercase letters only.

12.3.2 CREATING AND USING UNION

VARIABLES

In a C programming language, there are two ways to create union

variables. We can create union variable while the union is defined and

we can also create after terminating union using union keyword.

TO access members of a union using union variable, we use dot (.)

operator. Consider the following example code...

Notes

82

In the above example program, the union variable "stud_1 is created

while defining the union and the variable "stud_2 is careted using union

keyword. Whenever we access the members of a union we use the dot (.)

operator.

12.3.3 MEMORY ALLOCATION OF UNION

When the unions are used in the c programming language, the memory

does not allocate on defining union. The memory is allocated when we

create the variable of a particular union. As long as the variable of a

union is created no memory is allocated. The size of memory allocated is

equal to the maximum memory required by an individual member among

all members of that union. In the above example program, the variables

stud_1 and stud_2 are allocated with 30 bytes of memory each.

Notes

83

Check your Progress-1

1. How to create structure?

__

__

__

2. Define Union

__

__

__

3. Explain memory allocation of union

__

__

__

12.4 BIT FIELDS IN C

When we use structures in the C programming language, the memory

required by structure variable is the sum of memory required by all

individual members of that structure. To save memory or to restrict

memory of members of structure we use bitfield concept. Using bitfield

we can specify the memory to be allocated for individual members of a

structure. To understand the bitfields, let us consider the following

example code...

Notes

84

Here, the variable of Date structure allocates 6 bytes of memory.

In the above example structure the members day and month both does

not requires 2 bytes of memory for each. Becuase member day stores

values from 1 to 31 only which requires 5 bits of memory, and the

member month stores values from 1 to 12 only which required 4 bits of

memory. So, to save the memory we use the bitfields.

Consider the following structure with bitfields...

Here, the variable of Date structure allocates 4 bytes of memory.

12.5 COMMAND LINE ARGUMENTS IN C

In C programming language, command line arguments are the data

values that are passed from command line to our program. Using

command line arguments we can control the program execution from the

outside of the program. Generally, all the command line arguments are

handled by the main() method. Generally, the command line arguments

can be understood as follows...

Command line arguments are the parameters passing to main()

method from the command line.

When command line arguments are passed main() method receives them

with the help of two formal parameters and they are,

 int argc

 char *argv[]

Notes

85

int argc - It is an integer argument used to store the count of command

line arguments are passed from the command line.

char *argv[] - It is a character pointer array used to store the actual

values of command line arguments are passed from the command line.

 Important Points to be Remembered

o The command line arguments are supperated with SPACE.

o Always the first command line argument is file path.

o Only string values can be passed as command line arguments

o All the command line arguments are stored in a character

pointer array called argv[].

o Total count of command line arguments including file path

argument is stored in a integer parameter called argc.

Consider the following example program...

When execute the above program by passing "Hello welcome to

www.btechsmartclass.com" as command line arguments it produce the

following output.

Notes

86

In the above example program we are passing 4 string arguments (Hello,

welcome, to and www.btechsmartclass.com) but the default first

argument is a file path. So, the total count of command line arguments is

5.

Whenever we want to pass numerical values as command line arguments,

they are passed as string values only and we need to convert them into

numerical values in the program. Consider the following program that

calculates the sum of all command line arguments and displays the result.

When execute the above program by passing "10 20 30 40 50" as

command line arguments it produce the following output.

Notes

87

In the above example program we are passing 5 string arguments (10, 20,

30 40 and 50). They are converted into integer values by

using atoi() method which is available in stdlib.h header file.

12.6 FILES IN C

Generally, a file is used to store user data in a computer. In other words,

computer stores the data using files. we can define a file as follows...

File is a collection of data that stored on secondary memory like

haddisk of a computer.

C programming language supports two types of files and they are as

follows...

 Text Files (or) ASCII Files

 Binary Files

Text File (or) ASCII File - The file that contains ASCII codes of data

like digits, alphabets and symbols is called text file (or) ASCII file.

Binary File - The file that contains data in the form of bytes (0's and 1's)

is called as binary file. Generally, the binary files are compiled version of

text files.

File Operations in C

The following are the operations performed on files in C programming

language...

 Creating (or) Opening a file

 Reading data from a file

 Writing data into a file

 Closing a file

All the above operations are performed using file handling functions

available in C. We discuss file handling functions in the next topic.

Notes

88

12.7 FILE HANDLING FUNCTIONS IN C

File is a collection of data that stored on secondary memory like hard

disk of a computer.

The following are the operations performed on files in the C

programming language...

 Creating (or) Opening a file

 Reading data from a file

 Writing data into a file

 Closing a file

All the above operations are performed using file handling functions

available in C.

12.7.1 CREATING (OR) OPENING A FILE

To create a new file or open an existing file, we need to create a file

pointer of FILE type. Following is the sample code for creating file

pointer.

File *f_ptr ;

We use the pre-defined method fopen() to create a new file or to open an

existing file. There are different modes in which a file can be opened.

Consider the following code...

File *f_ptr ;

*f_ptr = fopen("abc.txt", "w") ;

The above example code creates a new file called abc.txt if it does not

exists otherwise it is opened in writing mode.

In C programming language, there different modes are available to open

a file and they are shown in the following table.

S.

No. Mode Description

1 r Opens a text file in reading mode.

Notes

89

S.

No. Mode Description

2 w Opens a text file in wirting mode.

3 a Opens a text file in append mode.

4 r+ Opens a text file in both reading and writing mode.

5 w+ Opens a text file in both reading and writing mode. It

set the cursor position to the begining of the file if it

exists.

6 a+ Opens a text file in both reading and writing mode.

The reading operation is performed from begining and

writing operation is performed at the end of the file.

 Note - The above modes are used with text files only. If we want to

work with binary files we use rb, wb, ab, rb+, wb+ and ab+.

Check your Progress-2

4. Define – a. int argc

 b. char *argv[]

__

__

__

5. Explain the concept of Files

__

__

__

6. State and define two types of files supported byC programming

language

__

__

__

Notes

90

12.8 LET US SUM UP

The structure is used to create user-defined data type in the C

programming language. The union is used to create user-defined data

type in the C programming language. Using bitfield we can specify the

memory to be allocated for individual members of a structure. Using

command line arguments we can control the program execution from the

outside of the program.

12.9 KEYWORDS

non-homogeneous elements - The non-homogeneous data structures

are the one in which the data elements doesn't belong to the same data

type

Memory allocation is a process by which computer programs and

services are assigned with physical or virtual memory space.

Command line arguments- are the data values that are passed from

command line to our program

12.10 QUESTIONS FOR REVIEW

1. Discuss creating and using structure variables.

2. Explain how to create union.

3. What is Bit Field in C?

4. Explain Command line argument with example.

5. Enumerate creating (or) opening a file

12.11 SUGGESTED READINGS AND

REFERENCES

10. B. Gottfried: Programming with C , Tata McGraw-Hill Edition 2002.

Notes

91

11. E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

12. Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

13. Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

14. Analysis of Numerical Methods—Isacsons& Keller.

15. Numerical solutions of Ord. Diff. Equations—M K Jain

16. Numerical solutions of Partial Diff. Equations—G D Smith.

17. Programming with C, B. Gottfried, Tata-McGraw Hill

18. Programming with C, K. R. Venugopal and Sudeep R. Prasad, Tata-

McGraw Hill

12.12 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide explanation with example – 12.2.1

2. Provide definition – 12.3

3. Provide explanation – 12.3.3

4.Provide definition – 12.4

5. Provide definition – 12.6

6. Provide definition – 12.6

92

UNIT-13 FILE HANDLING

FUNCTION AND ERROR HANDLING

IN C

STRUCTURE

13.0 Objectives

13.1 Introduction

13.2Reading from a file

13.2.1 getc()

13.2.2 getw()

13.2.3 fscanf()

13.2.4 fgets()

13.2.5 fread()

13.3 Writing into a File

13.3.1 putc()

13.3.2 putw()

13.3.3 fprintf()

13.3.4 fputs()

13.3.5 fwrite()

13.4 Closing a File

13.5 Cursor Positioning Functions in Files

13.5.1 ftell()

13.5.2 rewind()

13.5.3 fseek()

13.6 Let us sum up

13.7 Keywords

13.8 Questions for Review

13.9 Suggested Reading and References

Notes

93

13.10 Answers to Check your Progress

13.0 OBJECTIVES

Understand the concept of File Handling Functions in C like reading,

writing and closing of a file.

Enumerate Cursor positing function in Files

13.1 INTRODUCTION

A file is used to store user data in a computer. File is a collection of data

that stored on secondary memory like hard disk of a computer. The

following are the operations performed on files in the C programming

language...

13.2 READING FROM A FILE

The reading from a file operation is performed using the following pre-

defined file handling methods.

getc()

getw()

fscanf()

fgets()

fread()

13.2.1 getc(*file_pointer) - This function is used to read a character

from specified file which is opened in reading mode. It reads

from the current position of the cursor. After reading the

character the cursor will be at next character.

Notes

94

Output

13.2.2 getw(*file_pointer) - This function is used to read an integer

value form the specified file which is opened in reading mode. If the data

in file is set of characters then it reads ASCII values of those characters.

Notes

95

 Output

13.2.3 fscanf(*file_pointer, typeSpecifier, &variableName) - This

function is used to read multiple datatype values from specified file

which is opened in reading mode.

Output:

13.2.4 fgets(variableName, numberOfCharacters, *file_pointer) -

 This method is used for reading a set of characters from a file which is

Notes

96

opened in reading mode starting from the current cursor position. The

fgets() function reading terminates with reading NULL character.

Output

13.2.5 fread(source, sizeofReadingElement, numberOfCharacters,

FILE *pointer) - This function is used to read specific number of

sequence of characters from the specified file which is opened in reading

mode.

Notes

97

Output

13.3 WRITING INTO A FILE

The writing into a file operation is performed using the following pre-

defined file handling methods.

1. putc()

2. putw()

3. fprintf()

4. fputs()

5. fwrite()

13.3.1 putc(char, *file_pointer) - This function is used to write/insert a

character to the specified file when the file is opened in writing mode.

Output

Notes

98

13.3.2 putw(int, *file_pointer) - This function is used to writes/inserts

an integer value to the specified file when the file is opened in writing

mode.

Output

13.3.3 fprintf(*file_pointer, "text") - This function is used to

writes/inserts multiple lines of text with mixed data types (char, int, float,

double) into specified file which is opened in writing mode.

Notes

99

Output

13.3.4 fputs("string", *file_pointer) - This method is used to insert

string data into specified file which is opened in writing mode.

Notes

100

Output:

13.3.5 fwrite(―StringData”, sizeof(char), numberOfCharacters, FILE

*pointer) - This function is used to insert specified number of characters

into a binary file which is opened in writing mode.

Output

13.4 CLOSING A FILE

Notes

101

Closing a file is performed using a pre-defined method fclose().

The method fclose() returns '0'on success of file close otherwise it returns

EOF (End Of File).

Check your Progress-1

1. Explain getw(*file_pointer)

__

__

__

2. State putw(int, *file_pointer)

__

__

__

3. What do you understand by Closing a file

__

__

__

13.5 CURSOR POSITIONING FUNCTION

IN C

C programming language provides various pre-defined methods to set

the cursor position in files. The following are the methods available in C,

to position cursor in a file.

1. ftell()

2. rewind()

3. fseek()

13.5.1 ftell(*file_pointer) - This function returns the current position of

the cursor in the file.

Notes

102

Output

13.5.2 rewind(*file_pointer) - This function is used reset the cursor

position to the beginning of the file.

Notes

103

Output:

13.5.3 seek(*file_pointer, numberOfCharacters, fromPosition) -

 This function is used to set the cursor position to the specific position.

Using this function we can set the cursor position from three different

position they are as follows.

 from beginning of the file (indicated with 0)

 from current cursor position (indicated with 1)

 from ending of the file (indicated with 2)

Output:

Notes

104

13.6 ERROR HANDLING IN C

C programming language does not support error handling that are

occured at program execution time. However, C provides a header file

called error.h. The header file error.h contains few methods and

variables that are used to locate error occured during the program

execution. Generally, C programming function returns NULL or -1 in

case of any error occurred, and there is a global variable

called errno which stores the error code or error number. The following

table lists few errno values and their meaning.

Error Number Meaning

1 Specified operation not permitted

2 No such file or directory.

3 No such process.

4 Interrupted system call.

5 IO Error

6 No such device or address

7 Argument list too long

8 Exec format error

9 Bad file number

10 No child processes

11 Try again

12 Out of memory

13 Permission denied

C programming language provides the following two methods to

represent errors occured during program execution.

Notes

105

 perror()

 strerror()

perror() - The perror() function returns a string passed to it along with

the textual representation of current errno value.

strerror() - The strerror() function returns a pointer to the string

representation of the current errno value. This method is defined in the

header file string.h

Consider the following example program...

Output:

Check your Progress-1

4. Explain seek(*file_pointer, numberOfCharacters, fromPosition)

__

__

__

Notes

106

5. Define perror() & strerror()

__

__

13.7 LET US SUM UP

We came across different file handling functions like reading, writing

and closing a file. C provides a header file called error.h. The header

file error.h contains few methods and variables that are used to locate

error occured during the program execution.

13.8 KEYWORDS

Mode- a way or manner in which something occurs or is experienced,

expressed, or done.

Predefined - defined, limited, or established in advance.

Execution time - The execution time or CPU time of a given task

is defined as the time spent by the system executing that task, including

the time spent executing run-time or system services on its behalf.

13.9 QUESTIONS FOR REVIEW

1. Discuss 2 reading function in details

2. What is writing into a file? Explain with the help of 3 functions with

examples

3. Discuss - C programming language provides various pre-defined

methods to set the cursor position in files

 4. Explain Error Handling in C

13.10 SUGGESTED READINGS AND

REFERENCES

Notes

107

1. B. Gottfried: Programming with C , Tata McGraw-Hill Edition

2002.

2. E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

3. Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

4. Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

5. Analysis of Numerical Methods—Isacsons& Keller.

6. Numerical solutions of Ord. Diff. Equations—M K Jain

7. Numerical solutions of Partial Diff. Equations—G D Smith.

8. Programming with C, B. Gottfried, Tata-McGraw Hill

9. Programming with C, K. R. Venugopal and Sudeep R. Prasad, Tata-

McGraw Hill

13.11 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide explanation with example – 13.2.2

2. Provide explanation with example – 13.3.2

3. Provide explanation – 13.4

4. Provide explanation with example – 13.5.3

5. Provide definition – 13.6

108

UNIT 14: APPLICATION OF C IN

NUMERICAL ANALYSIS

STRUCTURE

14.0 Objectives

14.1 Introduction

14.2 Lagrange Interpolation

14.3 INTEGRATION -Simpsons 3/8 Rule

14.4 Matrix inversion: Gauss Jordan method.

14.5 Largest Eigen value and corresponding eigen vector of a squre

matrix: Power method.

14.6 System of Linear equation: Gauss Seidal method.

14.7 Let us sum up

14.8 Keywords

14.8 Questions for Review

14.10 Suggested Reading and References

14.11 Answers to Check your Progress

14.0 OBJECTIVES

Understand the practical application of C programming in Numerical

analysis.

14.1 INTRODUCTION

Numerical analysis is the study of algorithms that use a numerical

approximation to solve complex mathematical and scientific problems.

The Numerical methods can only deliver approximate solutions to

problems over a defined interval such as time or distance.

Notes

109

These methods in Numerical analysis offer approximate solutions to the

problems over a defined interval such as time or distance.

14.2 LAGRANGE INTERPOLATION

Lagrange Interpolation is a process of estimation of an unknown data by

analyzing the given reference data known as Lagrange Interpolation.

For given data, (say 'y' at various 'x' in tabulated form), the Lagrange 'y'

value corresponding to 'x' values can be found by Lagrange Interpolation.

As the Lagrange Interpolation program is executed, it first asks analyse

number of known data.

Then, values of x and corresponding y are asked. In Lagrange

interpolation in C language, x and y are defined as arrays so that a

number of data can be stored under a single variable name.

After getting value of x and y, the program displays input data so that

user can correct any incorrectly input data or re-input some missing data.

The user is asked to input the value of 'x' at which the value of 'y' is to be

interpolated.

At this step, the value of 'y' is computed in loops using Lagrange

interpolation formula.

Lagrange Interpolation = f(x) = xy 0+xy1+............+ xyn

Finally the value of 'y' corresponding to 'x' is found.

At last, user is asked to input '1' to run the Lagrange Interpolation

program again.

This is again an Nth degree polynomial approximation formula to the

function f(x), which is known at discrete points xi, i = 0, 1, 2 . . . Nth.

The formula can be derived from the Vandermonds determinant but a

much simpler way of deriving this is from Newton's divided difference

formula. If f(x)Lagrange is approximated with an Nth degree polynomial

then the Nth divided difference of f(x) constant and (N+1)th divided

Notes

110

difference is zero. That is Lagrange Interpolation = f [x0, x1, . . . xn, x] =

0

Polynomial Interpolation:

The polynomial interpolation problem is the problem of constructing a

polynomial that passes through or interpolates n+1 data points

(x0, y0), (x1, y1), ... , (xn, yn)

Lagrange Interpolation:

To construct a polynomial of degree n passing through n+1 data points

(x0, y0), (x1, y1), ... , (xn, yn) we start by

constructing a set basis polynomials Ln,k(x) with the property that

Ln,k(xj) = {

#include<stdio.h>

#include<conio.h>

#define MaxN 90

void main()

{

Notes

111

 float arr_x[MaxN+1], arr_y[MaxN+1], numerator, denominator, x, y=0;

 int i, j, n;

 clrscr();

 printf("Enter the value of n: \n");

 scanf("%d", &n);

 printf("Enter the values of x and y: \n");

 for(i=0; i<=n; i++)

 scanf("%f%f", &arr_x[i], &arr_y[i]);

 printf("Enter the value of x at which value of y is to be calculated: ");

 scanf("%f", &x);

 for (i=0; i<=n; i++) /* loop for finding numerator and

denominator */

 {

 numerator=1;

 denominator=1;

 for (j=0; j<=n; j++)

 if(j!=i)

 {

Notes

112

 numerator *= x-arr_x[j];

 denominator *= arr_x[i]-arr_x[j];

 }

 y+=(numerator/denominator)*arr_y[i];

 }

printf("When x=%4.1f y=%7.1f\n",x,y);

 getch();

 }

Output:

Enter the value of n:5

Enter the values of x and y:

5 150

7 392

11 1452

13 2366

17 5202

Enter the value of x at which value of y is to be calculated: 9

When x=9.0 y=809.9

14.3 INTEGRATION -SIMPSONS 3/8 RULE

What is Simpsons 3/8 Rule?

The Simpson‘s 3/8
th

 rule was developed by a mathematician named

Thomas Simpson. Integration is the process of measuring the area under

a function plotted on a graph.

Notes

113

The Simpson‘s 3/8
th

 rule is used in complex numerical integrations. This

integration method uses parabolas to approximate each part of the curve.

It is basically used to measure an area in a curve.

The Simpson‘s 3/8th method is used for uniformly sampled function

integration purpose. The Simpson‘s 3/8
th

 integration method is primarily

used for numerical approximation of definite integrals.

Simpson’s Rule Formula

Algorithm For Simpson’s 3/8 Rule

Method 1: C Program For Simpson’s 3/8
th

 Rule using Function

Notes

114

Output

Method 2: C Program For Simpsons 3/8 Rule without using

Function

Output

Notes

115

Check your Progress-1

1. What is Lagrange Interpolation?

__

__

__

2. Explain Simpson‘s 3/8th rule with algorithm

__

__

14.4 MATRIX INVERSION: GAUSS

JORDAN METHOD

The Gauss-Jordan method is used to analyze different systems of linear

simultaneous equations that arise in engineering and science. This

method finds its application in examining a network under sinusoidal

steady state, output of a chemical plant, electronic circuits consisting

invariant elements, and more.

The C program for Gauss-Jordan method is focused on reducing the

system of equations to a diagonal matrix form by row operations such

that the solution is obtained directly. Further, it reduces the time and

effort invested in back-substitution for finding the unknowns, but

requires a little more calculation. (see example)

The Gauss-Jordan method is simply a modification of the Gauss

elimination method. The eliminations of the unknowns is performed not

only in the equations below, but in those above as well. That is to say –

unlike the elimination method, where the unknowns are eliminated from

pivotal equation only, this method eliminates the unknown from all the

equations.

The program of Gauss-Jordan Method in C presented here

diagonalizes the given matrix by simple row operations. The additional

calculations can be a bit tedious, but this method, overall, can be

effectively used for small systems of linear simultaneous equations.

https://www.codewithc.com/c-program-for-gauss-elimination-method/
https://www.codewithc.com/c-program-for-gauss-elimination-method/

Notes

116

In the Gauss-Jordan C program, the given matrix is diagonalized using

the following step-wise procedure.

1. The element in the first column and the first row is reduced 1,

and then the remaining elements in the first column are made 0

(zero).

2. The element in the second column and the second row is made

1, and then the other elements in the second column are

reduced to 0 (zero).

3. Similarly, steps 1 and 2 are repeated for the next 3rd, 4th and

following columns and rows.

4. The overall diagonalization procedure is done in a sequential

manner, performing only row operations.

Source Code for Gauss-Jordan Method in C:

Input/Output:

Note: Let us consider a system of 10 linear simultaneous equations.

Solving this by Gauss-Jordan method requires a total of 500

Notes

117

multiplication, where that required in the Gauss elimination method is

only 333.

Therefore, the Gauss-Jordan method is easier and simpler, but requires

50% more labor in terms of operations than the Gauss elimination

method. And hence, for larger systems of such linear simultaneous

equations, the Gauss elimination method is the more preferred one

14.5 EIGEN VALUE: POWER METHOD

Power method is used to find the dominant eigen value and the

corresponding eigen vector. Eigen value problems generally arise in

dynamics problems and structural stability analysis. Power method is

generally used to calculate these eigen value and corresponding eigen

vector of the given matrix.

The C program for power method is just a programming illustration of

power method as one of the most well suited iterative approach for

machine computations. With this, the numerically greatest eigen value

and the subsequent eigen vector can be computed to analyze different

engineering problems.

Before going into the program for Power Method in C language, let‘s

look at a simple mathematical formulation of eigen values and eigen

vector. For this, consider a matrix A. We have to find the column vector

X and the constant L (L=lamda) such that:

[A]{X} = L{X}

Now, consider these three set of equations:

a11x1 + a12x2 + a13x3 = Lx1

a12x1 + a22x2 + a23x3 = Lx2

a31x1 + a32x2 + a33x3 = Lx3

These equations can be written as:

(a11-L)x1 +a12x2 +a13x3 = 0

a21x1 +(a22-L)x2 +a23x3 = 0

a31x1 +a32x2 + (a33-L)x3 = 0

https://www.codewithc.com/c-program-for-gauss-elimination-method/
http://math.mit.edu/~gs/linearalgebra/ila0601.pdf
http://math.mit.edu/~gs/linearalgebra/ila0601.pdf

Notes

118

Now the determinant of the 3*3 matrix formed of the coefficients of x1,

x2 and x3 terms gives three roots, namely L1, L2 and L3 (read L as

lamda). These values are called characteristic or eigen values. For each

of these values, we get a set of column vector with elements x1, x2 and

x3. This vector is the required eigen vector.

The Power method C program given below utilizes continuous

approximation of L (lamda) to the eigen value and X to the eigen vector.

For this method, the matrix should be symmetric or positive definitive

i.e. aij = aji.

Source Code for Power Method in C:

Notes

119

Input/Output:

14.6 SYSTEM OF LINEAR EQUATION:

GAUSS SEIDEL METHOD

What is Gauss Seidel Method?

The Gauss Seidel method is an iterative process to solve a square system

of multiple linear equations. It also is popularly known as Liebmann

method.

In an iterative method in numerical analysis, every solution attempt

is started with an approximate solution of an equation and iteration is

performed until the desired accuracy is obtained.

In Gauss-Seidel method, the most recent values are used in successive

iterations. The Gauss-Seidel Method allows the user to control round-off

error.

The Gauss Seidel method is very similar to Jacobi method and is called

as the method of successive displacement.

The Gauss Seidel convergence criteria depend upon the following two

properties:

1. The matrix is diagonally dominant.

2. The matrix is symmetrical and positive – definite.

Gauss Seidel Method Algorithm

Notes

120

Advantages

 Faster iteration process.

 Simple and easy to implement.

 Low on memory requirements.

Disadvantages

 Slower rate of convergence.

 Requires a large number of iterations to reach the convergence

point.

Note: This Gauss Seidel method C Program is compiled with GNU GCC

compiler using CodeLite IDE on Microsoft Windows 10 operating

system.

Method: Implement Gauss Seidel Method in C Programming

Notes

121

Output

Check your Progress-2

3. state the steps used for diagonalization in the Gauss-Jordan C program

__

__

4. Explain Power Method

__

__

__

5. State advantage and disadvantage of Gauss Seidel Method?

__

__

__

14.7 LET US SUM UP

We came across different concepts of interpolation, integration, matrix

and power methods. We understood the application of C code in

Numerical analysis with examples

14.8 KEYWORDS

Notes

122

Function - a function is a relation between sets that associates to every

element of a first set exactly one element of the second set.

Approximate - to estimate a number, amount or total, often. rounding it

off to the nearest 10 or 100

Diagonalization is the process of transforming a matrix into diagonal

form.

Simultaneous equations - a set of equations in two or more variables

for which there are values that can satisfy all the equations

simultaneously

Iterative methods - Stationary iterative methods solve a linear system

with an operator approximating the original one; and based on a

measurement of the error in the result (the residual), form a "correction

equation" for which this process is repeated.

14.9 QUESTIONS FOR REVIEW

1. Write C program for Lagrange Interpolation.

2. State C Program For Simpsons 3/8 Rule without using Function.

3. Discuss Source Code for Gauss-Jordan Method in C

 4. Explain Source Code for Power Method in C.

5. How Gauss Seidel Method will be implemented in C Programming?

14.10 SUGGESTED READINGS AND

REFERENCES

1. B. Gottfried: Programming with C , Tata McGraw-Hill Edition

2002.

2. E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

Notes

123

3. Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

4. Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

5. Analysis of Numerical Methods—Isacsons& Keller.

6. Numerical solutions of Ord. Diff. Equations—M K Jain

7. Numerical solutions of Partial Diff. Equations—G D Smith.

8. Programming with C, B. Gottfried, Tata-McGraw Hill

9. Programming with C, K. R. Venugopal and Sudeep R. Prasad,

Tata-McGraw Hill

14.11 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide explanation – 14.2

2. Provide explanation with algorithm – 14.3

3. Provide steps – 14.4

4. Provide explanation – 14.5

5. Provide advantage and disadvantage – 14.6

